Hubble Sees a Star About to Ignite

The FS Tau multi-star system. Credit: NASA, ESA, K. Stapelfeldt (NASA JPL), G. Kober (NASA/Catholic University of America)

We know how stars form. Clouds of interstellar gas and dust gravitationally collapse to form a burst of star formation we call a stellar nursery. Eventually, the cores of these protostars become dense enough to ignite their nuclear furnace and shine as true stars. But catching stars in that birth-moment act is difficult. Young stars are often hidden deep within their dense progenitor cloud, so we don’t see their light until they’ve already started shining. But new observations from the Hubble Space Telescope have given us our earliest glimpse of a shiny new star.

Continue reading “Hubble Sees a Star About to Ignite”

Merging Stars Can Lead to Blue Supergiants

Artistic image of a binary system of a red giant star and a younger companion that can merge to produce a blue supergiant. Credit: Casey Reed, NASA

In the constellation of Orion, there is a brilliant bluish-white star. It marks the right foot of the starry hunter. It’s known as Rigel, and it is the most famous example of a blue supergiant star. Blue supergiants are more than 10,000 times brighter than the Sun, with masses 16 – 40 times greater. They are unstable and short-lived, so they should be rare in the galaxy. While they are rare, blue supergiants aren’t as rare as we would expect. A new study may have figured out why.

Continue reading “Merging Stars Can Lead to Blue Supergiants”

Dwarf Galaxies Could be the Key to Explaining Dark Matter

Dark matter map in Galaxy Cluster Abell 1689. Credit: NASA, ESA, and D. Coe (NASA JPL/Caltech and STScI)

If you have a view of the southern celestial sky, on a clear night you might see two clear smudges of light set off a bit from the great arch of the Milky Way. They are the Large and Small Magellanic Clouds, and they are the most visible of the dwarf galaxies. Dwarf galaxies are small galaxies that typically cluster around larger ones. The Milky Way, for example, has nearly two dozen dwarf galaxies. Because of their small size, they can be more significantly affected by dark matter. Their formation may even have been triggered by the distribution of dark matter. So they can be an excellent way to study this mysterious unseen material.

Continue reading “Dwarf Galaxies Could be the Key to Explaining Dark Matter”

A 790,000 Year-Old Asteroid Impact Could Explain Seafloor Spherules

A 0.4-millimeter diameter iron-rich spherule. Credit: Avi Loeb/The Galileo Project

Our solar system does not exist in isolation. It formed within a stellar nursery along with hundreds of sibling stars, and even today has the occasional interaction with interstellar objects such as Oumuamua and Borisov. So it’s reasonable to presume that some interstellar material has reached Earth. Recently Avi Loeb and his team earned quite a bit of attention with a study arguing that it had found some of this interstellar stuff on the ocean seabed. But a new study finds that the material has a much more local origin.

Continue reading “A 790,000 Year-Old Asteroid Impact Could Explain Seafloor Spherules”

Black Holes Need Refreshing Cold Gas to Keep Growing

A pair of disc galaxies in the late stages of a merger. Credit: NASA

The Universe is filled with supermassive black holes. Almost every galaxy in the cosmos has one, and they are the most well-studied black holes by astronomers. But one thing we still don’t understand is just how they grew so massive so quickly. To answer that, astronomers have to identify lots of black holes in the early Universe, and since they are typically found in merging galaxies, that means astronomers have to identify early galaxies accurately. By hand. But thanks to the power of machine learning, that’s changing.

Continue reading “Black Holes Need Refreshing Cold Gas to Keep Growing”

White Dwarfs Might Be Less Dead Than We Thought

Artist illustration of crystals forming within a white dwarf. Credit: University of Warwick/Mark Garlick

At the end of their lives, most stars including the Sun will become white dwarfs. After a red dwarf or sun-like star consumes all the hydrogen and helium it can, the remains of the star will collapse under its own weight, shrinking ever more until the quantum pressure of electrons becomes strong enough to counter gravity. White dwarfs begin their days as brilliantly hot embers of degenerate matter and grow ever cooler and dimmer as they age.

Continue reading “White Dwarfs Might Be Less Dead Than We Thought”

Webb Sees a System That Just Finished Forming its Planets

An artistic impression adapted to highlight gas dispersing from a planet-forming disk. Credit: ESO/M. Kornmesser

Nearly 5 billion years ago a region of gas gravitationally collapsed within a vast molecular cloud. At the center of the region, the Sun began to form, while around it formed a protoplanetary disk of gas and dust out of which Earth and the other planets of the solar system would form. We know this is how the solar system began because we have observed this process in systems throughout the galaxy. But there are details of the process we still don’t understand, such as why gas planets are relatively rare in our system.

Continue reading “Webb Sees a System That Just Finished Forming its Planets”

Astronomers Can See the Impact Site Where an Asteroid Crashed Into a White Dwarf

This artist’s impression shows the magnetic white dwarf WD 0816-310. Credit: ESO/L. Calçada

Nothing is immortal. Everything has a finite existence, including the stars themselves. How a star dies depends on several factors, most importantly their mass. For the Sun, this means that in several billion years it will swell to a red giant as it churns through the last of its nuclear fuel. The core that remains will then collapse to become a white dwarf. Of course, the Sun is home to several planets, including Earth. What of their fate? What of ours? According to a recent study, the Sun’s death might consume Earth in the end.

Continue reading “Astronomers Can See the Impact Site Where an Asteroid Crashed Into a White Dwarf”

Cosmic Dust Could Have Helped Get Life Going on Earth

This artist’s impression shows dust forming in the environment around a supernova explosion. Credit: ESO/M. Kornmesser

Life on our planet appeared early in Earth’s history. Surprisingly early, since in its early youth our planet didn’t have much of the chemical ingredients necessary for life to evolve. Since prebiotic chemicals such as sugars and amino acids are known to appear in asteroids and comets, one idea is that Earth was seeded with the building blocks of life by early cometary and asteroid impacts. While this likely played a role, a new study shows that cosmic dust also seeded young Earth, and it may have made all the difference.

Continue reading “Cosmic Dust Could Have Helped Get Life Going on Earth”

We Could Snoop on Extraterrestrial Communications Networks

The Atacama Large Millimeter/submillimeter Array (ALMA). Credit: C. Padilla, NRAO/AUI/NSF

The conditions for life throughout the Universe are so plentiful that it seems reasonable to presume there must be extra-terrestrial civilizations in the galaxy. But if that’s true, where are they? The Search for Extra-terrestrial Intelligence (SETI) program and others have long sought to find signals from these civilizations, but so far there has been nothing conclusive. Part of the challenge is that we don’t know what the nature of an alien signal might be. It’s a bit like finding a needle in a haystack when you don’t know what the needle looks like. Fortunately, any alien civilization would still be bound by the same physical laws we are, and we can use that to consider what might be possible. One way to better our odds of finding something would be to focus not on a direct signal from a single world, but the broader echos of an interstellar network of signals.

Continue reading “We Could Snoop on Extraterrestrial Communications Networks”